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1. Introduction

Over the past ten years new ‘single-molecule’ techniques to study individual
biomolecules have been developed. Many of the new approaches being used are
based on micromanipulation of single DNAs, allowing direct study of DNA, and
enzymes which interact with it. These lectures focus on mechanical properties of
DNA, crucial to the design and interpretation of single-DNA experiments, and to
the understanding of how DNA is processed and therefore functions, inside the
cell.

A seminal example of a single-DNA experiment was the measurement of the
force exerted by RNA polymerase [1], done by Jeff Gelles, Steve Block and
co-workers. Gene sequences in DNA are ‘read’ by RNApol, which synthesizes
an RNA copy of a DNA sequence. The experiment (Fig. 1) revealed that as a
RNApol moves along a DNA, it is able to pull with up to 30 × 10−12 Newtons,
or 30 piconewtons (pN) of force. In the single-molecule world, this is a hefty
force: the motor proteins which generate your muscle contractions, called myosin
generate only about 5 pN.

RNApol is an example of a processive enzyme which works rather like a
macroscopic engine, using stored chemical energy to catalyze not only the syn-
thesis of RNA, but also converting some of that energy to mechanical work. This
mechanical work is absolutely necessary for RNApol’s function: it must move
‘processively’ along the DNA double helix in order to make a faithful copy of
DNA. Another important DNA-processing enzyme is DNA polymerase which is
able to synthesize a copy of a DNA strand; this is important in cell division, since
in order to make a copy of itself, a cell must faithfully copy its chromosomal
DNAs. Proper understanding of this kind of DNA-processing enzyme machinery
requires us to first understand the mechanical properties of DNA itself.

DNA has extremely interesting and unique polymer properties. In double he-
lix form it is a water-soluble, semiflexible polymer which can be obtained in
gigantic lengths. We often measure DNA length in ‘bases’ or ‘base pairs’; each
DNA base of nm dimensions encodes one of four ‘letters’ (A, T, G or C) in a
genetic sequence. A human genome contains 3×109 bases divided into 23 chro-
mosomes. Each chromosome therefore contains a DNA roughly 10 8 bases long;
chromosomal DNAs are the longest linear polymers known. Furthermore, the
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Fig. 1. Sketch of single-DNA experiment of Wang et al to measure force generated by RNA poly-
merase (reproduced from Ref. [1]). The polymerase is attached to the glass, and the DNA is pulled
through it. A bead at the end of the DNA is held in a laser trap; deflection of the bead in the trap
indicates the applied force.

base-paired complementary-strand structure of the double helix offers up new
types of polymer physics problems, which we will explore in these lectures.

I note some physical scales relevant to these lectures. The fundamental length
scale of molecular biology is the nanometer (nm); this is a distance several atoms
long, the size of a single nucleic acid (DNA or RNA) base (the basic unit of
information in molecular biology), or a single amino acid (the elementary unit
of proteins). Cells must maintain their nm-scale organizational structure at room
temperature: this requires that components be acted on by forces of roughly
1 kBT/nm = 4× 10−21 J/10−9 m = 4× 10−12 N = 4 pN.
We can expect the forces generated by single mechanoenzymes to be on the pN
scale. If RNApol generated smaller forces than this, it would get pushed around
by thermal forces, and would be unable to read DNA sequence in a processive
manner.

Problem 1: Consider a molecule localized by a harmonic force f = −kx.
What force constant is necessary to have

〈
x2
〉
= 1 nm2? What is the typical

(root-mean-squared) force applied to the molecule in this case? Repeat this cal-
culation if the localization is done to 1 Å (atomic) accuracy.

Problem 2: Consider a nanowire made of some elastic material, with circular
cross-section of diameter d. In any cross-section of the wire, what will be the
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typical elongational stress (force per area) due to thermal fluctuations? What
does this suggest about the Young modulus of the material that you might try to
use to make a nanowire?

Problem 3: Consider a random sequence of DNA bases 48502 bases long.
How many times do you expect to find the sequences AATT, ACTAGT and GGC-
CGGCC?

2. The Double Helix is a Semiflexible Polymer

The double helix (sometimes called the ‘B-form’) is taken by DNA most of the
time in the cell. This form of DNA has a regular helical structure with remarkably
uniform mechanical properties. This section will focus on the bending flexibility
of the double helix, which gives rise to polymer elasticity effects which are of
biological importance, and accessible in biophysical experiments.

2.1. Structure

The double helix is made of two DNA polymer molecules. Each DNA polymer
is a string of four interchangable types of ‘monomers’, which can be strung to-
gether in any sequence. The monomers each carry a sugar-phosphate backbone
element: these are covalently bound together in the polymer. However, each
monomer also carries, attached to the sugar (which is deoxyribose), one of four
possible ‘bases’: either adenine (A), thymine (T), guanine (G) or cytosine (C).

The length of each backbone unit is about 0.7 nm when extended. The bases
are each about 1 nm wide, and 0.3 nm thick.

The structure of each polymer gives it a definite ‘polarity’. It is conventional
to report DNA sequence along each strand in the direction read by RNA poly-
merase, from 5’ to 3’ (the number refer to carbon atoms in the deoxyriboses).
Often people just omit the leading 5’: in this case it is almost always in 5’ to 3’
order.

The bases have shapes and hydrogen-bonding sites which make A-T and G-C
bonds favorable, under the condition that the two strands are anti-aligned (see
sketch). Such complementary strands will bind together, making inter-strand
hydrogen bonds, and intra-strand stacking interactions. The stacking of the bases
drives the two strands to twist around one another to form a helix, since each base
is only about 0.3 nm thick while the backbones are roughly 0.7 nm long per base.

We can roughly estimate the helix parameters of the double helix, assuming
that the backbones end up tracing out a helical path on the surface of a cylinder
of radius 1 nm (the bases are 1 nm across). Since each base is 0.34 nm thick, and
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2 nm
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M

m

Fig. 2. DNA double helix structure. The two complementary-sequence strands noncovalently bind
together, and coil around one another to form a regular helix. The two strands can be seen to have
directed chemical structures, and are oppositely directed. Note the different sizes of the major (M)
and minor (m) grooves. The helix repeat is 3.6 nm, and the DNA cross-sectional diameter is 2 nm.
DNA image reproduced from Ref. [2].
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traces a helix contour length of 0.7 nm, the circumference occupied by each base
is
√
0.72 − 0.342 nm = 0.61 nm. Dividing the total circumference (6.3 nm) by

this indicates that the double helix contains about 10.3 base pairs (bp) per helical
turn. This is very close to the number usually quoted of 10.5 bp/turn; the double
helix therefore makes one turn for every 10.5× 0.34 = 3.6 nm.

The B-form double helix is right-handed, with the two backbones oriented in
opposite directions. This means that there are two types of ‘grooves’ between the
backbones: these are in fact rather different in size in B-DNA, and are called the
‘major groove’ and the ‘minor groove’.

We should remember the following conversion factor for the double helix,
length: 1 bp = 0.34 nm, thus each micron (1000 nm) worth of DNA contains
about 3000 bp = 3 kilobp (kb); one whole human genome is thus close to 10 9 nm
= 1 m in length.

Problem 4: Consider a hypothetical form of double helix formed of two
parallel-orientation strands. Describe the grooves between the backbones.

Problem 5: A student proposes that for two complementary-sequence biologi-
cal DNA strands, there must be an equivalent form of double helix, of free energy
equal to B-DNA, which is instead left-handed. Explain under what circumstances
of symmetry of the monomers this conjecture can be expected to be true. Based
on textbook pictures of the base and backbone chemical structures, what is your
conclusion?

Problem 6: Do you expect the average helix repeat (base-pairs per turn) of the
double helix to increase or decrease with increased temperature?

Problem 7: Estimate the ‘Young modulus’ of the double helix, using the as-
sumption that the single-base helix parameters described above apply to room-
temperature structure of DNA to roughly 1 Å precision.

2.2. DNA Bending

Although the structure of DNA is often presented in books as if it is static, at
room temperature and in solution the double helix undergoes continual thermally
excited changes in shape. Per base pair, the fluctuations are usually small dis-
placements (a few degrees of bend, 0.03 nm average separations of the bases) but
over long stretches of double helix, they build up to significant, thermally excited
random bends. Note that rarely, more profound thermally-excited disturbances
of double helix structure (e.g., transient unbinding of base pairs) can be expected
to occur.
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Fig. 3. Molecular-dynamics snapshot of typical DNA conformation for a short 10 bp molecule in
solution at room temperature. Reproduced from Ref. [3].

2.2.1. Discrete-segment model of a semiflexible polymer

We can make a simple one-dimensional lattice model of thermally excited bend-
ing fluctuations. If we describe our DNA with a series of tangent vectors t̂j
that indicate the orientation of the center axis of the molecule, then the bending
energy associated with two adjacent tangents is E/(kBT ) = −at̂j · t̂j+1.

The dimensionless constant a describes the molecule’s bending rigidity: a >>
1 means very rigid (adjacent tangent vectors point in nearly the same direction);
a < 1 means very floppy. We’ll talk more about a below, but just to give a rough
idea of the stiffness of the DNA double helix, if we consider adjacent base pairs
to be described by successive tangents, the value of a to use is about 150.

Problem 8: Estimate the bend between two adjacent tangent vectors excited
thermally in the limit a >> 1; your result should be of the form〈∣∣t̂j − t̂j+1

∣∣2〉 ∝ ap

where p is a power. Hint: 12
∣∣t̂j − t̂j+1

∣∣2 = 1− t̂j · t̂j+1.
What is the typical single-base bending angle (in degrees) if we take a = 150?

We write the (unnormalized) probability distribution of a given conformation
of an N + 1-tangent-vector-long chunk of molecule using the Boltzmann distri-
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Fig. 4. Discrete-tangent and continuous-tangent models for DNA bending (see text).

bution:

P (t̂0, · · · , t̂N ) =
N−1∏
j=0

eat̂j ·t̂j+1 (2.1)

Now we compute the thermal correlation of the ends of this segment of polymer:

〈
t̂0 · t̂N

〉
=
∫
d2t0 · · · d2tN t̂0 · t̂N P (t̂0, · · · , t̂N )∫

d2t0 · · · d2tN P (t̂0, · · · , t̂N )
(2.2)

This calculation is not too hard to do using the formula (recall decomposition of
plane waves into spherical waves):

eat̂·t̂
′
=

∞∑
l=0

4πiljl(ia)
l∑

m=−l

Ylm(t̂)Y ∗
lm(t̂

′) (2.3)

and if you write the dot product t̂0 · t̂N as an l = 1 spherical harmonic, and place
t̂N along the ẑ axis.

The orthogonality of the spherical harmonics leads to a ‘collapse’ of the many
sums over l’s and m’s into one sum. In the numerator only the l = 1 term (from
the dot product) survives; in the denominator only the l = 0 term contributes.
The result is:

〈
t̂0 · t̂N

〉
=
(
ij1(ia)
j0(ia)

)N

= eN ln[coth(a)−1/a] (2.4)

The function coth(a)−1/a is less than 1 for positive a. Therefore the correlation
of direction falls off simply exponentially with contour distance N along our
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polymer. Small local fluctuations of bending of adjacent tangents build up to big
bends over the ‘correlation length’ of −1/ ln[coth(a)− 1/a] segments.

Problem 9: For the a >> 1 limit, how many segments long is the tangent-
vector correlation length?

Problem 10: Explain the relation between the discrete-tangent model dis-
cussed above and the one-dimensional Heisenberg (continuous-spin) model of
classical statistical mechanics. Suppose a magnetic field is added: what would
that correspond to in the polymer interpretation?

2.2.2. Bending elasticity and the persistence length

We can connect this discrete model to the continuous model for bending of a thin
rod, from the theory of elasticity. We note that the bending energy of two adjacent

tangents was, in kBT units, −at̂j · t̂j+1, which up to a constant is a
2

∣∣t̂ − t̂′
∣∣2.

The bending of a thin rod can be described in terms of tangent vectors t̂ dis-
tributed continuously along the rod contour. A bent rod has energy which is
locally proportional to the square of its bending curvature d t̂/ds (s is contour
length):

E =
B

2

∫ L

0

ds

∣∣∣∣dt̂ds
∣∣∣∣
2

(2.5)

where B is the rod bending modulus. For a rod of circular cross section of ra-
dius r made of an isotropic elastic material, B = π

4Y r
4 where Y is the Young

modulus [4].
Problem 11: By considering a simple circular arc, find the contour length

along a thin rod for which a one-radian bend has energy cost kBT .
Problem 12: Pretend that dsDNA is made of a plastic material of Young mod-

ulus 3× 108 Pa. Predict the bending constant B.

We can now connect our discrete and continuous models of bending, if we
introduce the length b of the segments in our discrete model:

E = −kBTa
N∑

j=1

t̂j · t̂j+1 = kBTab

2

N∑
j=1

b

∣∣∣∣ t̂j − t̂j+1
b

∣∣∣∣
2

→ B

2

∫ L

0

ds

∣∣∣∣dt̂ds
∣∣∣∣
2

(2.6)

where a constant energy shift has been dropped. The final term represents the
limit where we make b small, while making a big, keeping the product ab con-
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stant. This continuum limit turns the finite difference into a derivative, and the
sum into an integral.

The bending elastic constants a and B are related by kBTab = B, and the
rod length corresponds to the number of tangents through Nb = L. So, for a rod
with bending modulus B, if we wish to use a discrete tangent vector model with
segment length b, we need to choose a = B/(kBTb).

If we now go back to the correlation function (2.4), we can write it in the
continuum limit where a becomes large, replacing ln[coth a − 1/a] → −1/a
and obtaining

〈
t̂(s) · t̂(s′)〉 = e−kBT |s−s′|/B = e−|s−s′|/A (2.7)

The final term introduces the continuum version of the correlation length of (2.4)
A = B/(kBT ), called the persistence length. For the double helix, a variety of
experiments show that A = 50 nm (150 bp) in physiological aqueous solution [5]
(this term ‘physiological solution’ usually means water containing between 0.01
and 1 M univalent salt, and with pH between 7 and 8, at temperature between 15
and 30 C).

Problem 13: Starting with the persistence length A = 50 nm, estimate the
bending modulus B, and the ‘effective Young modulus’ Y of the DNA double
helix.

Both a and B represent effective elastic constants, and the bending energies
being discussed here are really free energies (as in the theory of elasticity, we
consider deformations at fixed temperature [4]). The ‘real’, microscopic internal
energy must include thermal energy and chemical binding energies of the atoms,
but as in many other areas of condensed matter physics we’ll choose to ignore
atomic details and use coarse-grained models, since I will focus on phenomena
at length scales of nm and larger (double helix deformations, DNA-protein inter-
actions). This is not to say that atomic detail is not important: many important
questions about the stability of the double helix and DNA-protein interactions
require information at atomic scales, and can be theoretically approached only
via numerical simulation of all the atoms involved [6] (Fig. 3).

2.2.3. End-to-end distance

The tangent vector t̂(s) can be used to compute the distance between two points
on our polymer, using the relation r(L) − r(0) =

∫ L

0
dst̂(s). This relation can

be used to compute the mean-square distance between contour points a distance
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L apart:〈
|r(L)− r(0)|2

〉
= 2AL+ 2A2

(
e−L/A − 1

)
(2.8)

In the limit where we look at points closer together than a persistence length,
L/A << 1, we have a mean-square distance = L2 + O(L/A); in this limit, the
polymer doesn’t bend very much, so its average end-to-end distance is just L.

In the opposite limit of a polymer many persistence lengths long, L/A >> 1,
we have a mean-square-distance of 2AL, just the size expected for a random-
walk of L/(2A) steps each of length 2A. We sometimes talk about the statistical
segment length or Kuhn segment length in polymer physics: for the semiflexible
polymer this segment length is 2A. For the double helix, 2A is about 100 nm or
300 bp [5].

2.2.4. DNA loop bending energies

We’ll hear in Section 5 about proteins which stabilize formation of DNA loops.
Often, looping of DNA occurs so that sequences roughly 10 to 1000 bp away
from the start of a gene can regulate (repress or enhance) that gene’s transcription
[7]. Formation of such a loop requires DNA bending, and now we can estimate
the associated free energy.

Suppose we form a loop of length L. The simplest model is a circle of cir-
cumference L, with radius L/(2π) and bending curvature 2π/L, and bending
energy

Ecircle
kBT

=
A

2
L

(
2π
L

)2
= 2π2

A

L
(2.9)

For L = 300 bp and A = 150 bp, this is a big energy - close to 10 kBT . A 100
bp circle would have a bending free energy three times larger than this!

You might be interested in the lowest energy necessary to bring two points a
contour length L along a rod together. The optimal shape of the rod is of course
not circular, but is instead tear-drop-shaped. The exact energy can be computed
in terms of elliptic functions to be [8]

Eteardrop
kBT

= 14.055
A

L
(2.10)

about 71% of the energy of the circle. In either teardrop or circle case, the energy
of making a loop diverges as 1/L for small L.

Problem 14: Carry out an approximate calculation of the tear-drop shape and
energy, by using a circular arc combined with two straight segments. Use energy
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minimization (with fixed total length) to find the angle at the base of the tear-
drop (you should only have one parameter to minimize over) and the tear-drop
configuration energy.

Problem 15: In a protein-DNA structure called the nucleosome, 146 bp of
DNA make 1.75 helical turns with helix radius of 5 nm, and helical pitch (spacing
of turns along the helix axis) of 3 nm. Using the simple models of this section,
estimate the bending free energy of the DNA in kBT .

2.2.5. Site-juxtaposition probabilities

These bending energies are not by themselves enough to accurately predict the
probability that a DNA segment of length L forms a loop; we must also sum
over bending fluctuations, thermally excited changes in shape. For the simple
bending model described above, sophisticated calculations have been done for
the probability of forming a loop.

Calculations of Stockmayer, Shimada and Yamakawa [8, 9] tell us the proba-
bility density for finding the two ends of a semiflexible polymer brought smoothly
together (with the same orientation):

Jcircle =
π2

(2A)3

(
2A
L

)6
e−Ecircle/kBT+0.257L/A (2.11)

If the condition that the ends come together smoothly is relaxed, the same authors
found

Jteardrop =
28.01
(2A)3

(
2A
L

)5
e−Eteardrop/kBT+0.246L/A (2.12)

The units of these expressions are density (inverse volume), i.e., concentration of
one end, at the position of the other.

For DNA, since the double helix can bend only over roughly 100 nm, the
natural scale for J is very roughly J ≈ (100 nm)−3 = 10−6 nm−3 ≈ 10−6

Mol/litre (1 Mol/litre, or M, is 0.6 nm−3).
The empirical results provide an accurate interpolation between the two limits

where bending energy (L/A < 1), and entropy (L/A > 1) dominate, including
the experimentally- and numerically-established result that the peak probability
of juxtaposition occurs for molecules about L = 170 nm (500 bp) long [5, 11].

For L >> A we reach the long-distance limit, where we may estimate the
probability of finding the two ends of a long DNA close together, using the aver-
age end-to-end distance (2.8), which is ≈ √

2AL in this limit. For L >> A, the
two ends are somewhere in a volume ≈ (AL)3/2. Therefore, the probability of
finding the two ends together for L/A >> 1 decays as J ≈ 1/(AL)3/2.
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Fig. 5. Juxtaposition probability (Jcircle in Mol/litre) for double helix. Solid lines show theoretical
result for simple semiflexible polymer model of DNA double helix. Inset shows theoretical Jcircle for
large distances, showing peak near 500 bp and L−3/2 decay. Main figure focuses on energetically-
dominated small-L behavior, showing strong suppression of probability in the simple semiflexible
polymer model (solid line). Open circles show recent experimental data of Cloutier and Widom
for short DNAs [12]; there is an anomalously large probability of juxtaposition for 94 bp. Filled
symbols correspond to a theory of DNA site juxtaposition including the effect of thermally excited
‘hinges’ [13]: we’ll hear more about this in Sec. 3.1.3.

This formula does not account for self-avoidance, but because the double he-
lix has a segment length 2A so much longer than its diameter (only 3 nm even
when electrostatic repulsion in physiological solution is taken into account) self-
avoidance effects can be neglected for molecules as large as 10 4 bp in length.

2.2.6. Permanent sequence-driven bends

We’ve focused on thermally excited bends, using a model which has as its ‘ground
state’ a perfectly straight conformation. The average shape of any DNA molecule
depends on its sequence: different sequences have slightly different average dis-
tortions. A remarkable discovery is that it is possible, by ‘phasing’ sequences
that generate kinks, one can obtain DNAs with strong permanent bends along
them [14]. Some of these strong permanent bends are implicated in biological
processes, for example facilitation of the binding of proteins that bend or wrap
DNA.
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2.3. Stretching out the double helix

One type of single-molecule experiment which has become widely studied is the
stretching of DNAs using precisely calibrated forces. Early experiments showed
that the double helix displayed polymer stretching elasticity of exactly what was
expected from the semiflexible polymer model introduced above. This has been
important to the design of many experiments focusing on the effects of proteins
or other molecules binding to, or moving along DNA. This subsection reviews
the basic polymer stretching elasticity of a long (L >> A) double helix DNA.

A force f applied to a single DNA molecule of length L appears in the Boltz-
mann factor coupled to the end-to-end vector along the force direction (which we
take to be z). Our energy becomes:

E =
kBTA

2

∫ L

0

ds

∣∣∣∣dt̂ds
∣∣∣∣
2

− f ẑ · [r(L)− r(0)] (2.13)

We can turn the end-to-end vector into an integral over t̂ as before, giving

βE =
∫ L

0

ds

[
A

2

∣∣∣∣dt̂ds
∣∣∣∣
2

− βf ẑ · t̂
]

(2.14)

A single parameter βAf controls this energy (to see this, write Eq. 2.14 using
contour length in units of A). We therefore have two regimes to worry about:
forces below, and above the characteristic force kBT/A.

For the double helix, A = 50 nm, so kBT/A = 0.02 kBT/nm = 0.08 pN. This
is a low force due to the long persistence length of the double helix.

Ideally, we want to calculate the partition function

Z(βAf) =
∫

Dt̂e−βE (2.15)

and then calculate the end-to-end extension, using

〈ẑ · [r(L)− r(0)]〉 = ∂ lnZ
∂βf

(2.16)

This can be done in general numerically, but we can find the low- and high-force
limits analytically.
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2.3.1. Small forces (< kBT/A = 0.08 pN)

For small forces, we can calculate the end-to-end extension using linear response,
since we know the zero-force fluctuation of the mean-square end-to-end distance:
recall that this was 2AL. This counted three components; by symmetry we have

〈
(ẑ · [r(L)− r(0)])2

〉
=

2AL
3

(2.17)

The linear force constant will be kBT divided by this fluctuation, giving a small-
extension force law:

f =
3kBT
2AL

z + · · · (2.18)

where we use the shorthand z = 〈ẑ · [r(L)− r(0)]〉 to indicate the average end-
to-end extension in the force direction.

This is just the usual ideal (Gaussian) low-extension force law familiar from
polymer physics. The spring constant of the polymer is inversely proportional to
the persistence length, and to the total chain length.

2.3.2. Larger forces (> kBT/A = 0.08 pN)

The linear force law shows that our ideal DNA will start to stretch out when
forces of ≈ kBT/A are applied to it. We can also calculate the very nonlinear
elasticity associated with the nearly fully stretched polymer, using an expansion
in 1/

√
f .

Suppose that the polymer is quite stretched out, so that t̂(s) = ẑt‖+u, where
u is in the xy plane, and has magnitude << 1. Since t̂2 = 1, t‖ =

√
1− |u|2 =

1− 1
2 |u|2+· · · Plugging this into the Hamiltonian (2.14) and expanding to leading

order in |u|2 gives:

βE = −βfL+
1
2

∫ L

0

ds

[
A

∣∣∣∣duds
∣∣∣∣
2

+ βf |u|2
]

(2.19)

In this limit, the fluctuations can be seen to slightly reduce the length, generating
the final energy cost term.

Introducing Fourier modes uq =
∫ L

0 dseiqsu(s) diagonalizes the Hamilto-
nian:

βE = −βfL+
1
2L

∑
q

(Aq2 + βf)|uq|2 (2.20)
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where q = ±2πn/L for n = 0,±1,±2, · · ·. The fluctuation amplitude of each
mode is therefore〈|uq|2

〉
=

2L
Aq2 + βf

(2.21)

where the leading 2 comes from the two components (x and y) of u. Now we
can compute the real-space amplitude:

〈|u(s)|2〉 = 2
∫ ∞

−∞

dq

2π
1

(Aq2 + βf)
=

1√
βAf

(2.22)

and finally the extension in the force direction

z = L
〈
t‖
〉
= L

(
1− 1

2
〈|u|2〉+ · · ·

)
= L

(
1− 1√

4βAf
+ · · ·

)
(2.23)

The semiflexible polymer shows a distinct 1/
√
f behavior as it is stretched out.

Also note that the energy expressed in wavenumbers shows that there is a force-
dependent correlation length for the bending fluctuations, given by ξ =

√
kBTA/f .

Experiments on double-helix DNAs show this relation [15–20].

The asymptotic linear relation between z and 1/
√
f is quite useful. It turns

out this holds well theoretically for the exact solution of the semiflexible polymer
model under tension, for z/L > 0.5. If you have experimental data for stretching
a semiflexible polymer, you can plot z versus 1/

√
f and fit a line to the z/L >

0.5, the z-intercept of the linear fit estimates the molecular length L, and the
1/

√
f intercept gives an estimate of

√
4βA, i.e., a measurement of persistence

length. The agreement between different kinds of single-DNA experiments gives
strong evidence that for long molecules, most of the elastic response comes from
thermal bending fluctuations.

2.3.3. Free energy of the semiflexible polymer

It is useful to compute the free energy difference between unstretched and stretched
polymer from the extension in the force direction, by integrating (2.16):

lnZ(f) = β

∫ f

0

df ′z(f ′) + lnZ(0) (2.24)

We’ll drop the constant lnZ(0), which amounts to taking the relaxed random coil
as a ‘reference state’ with free energy defined to be zero. For the semiflexible
polymer the free energy takes the form

lnZ(f) =
L

A
γ(βAf) (2.25)
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Fig. 6. Experimental data and models for stretching of the double helix, from Ref. [20]. Main
figure shows experimental data (squares) of Smith et al [15] and a fit to the semiflexible-polymer
model (solid line), for a persistence length A = 53 nm. The units of force are kBT/nm; recall
1kBT/nm= 4.1 pN, for T = 300 K. Inset shows a plot of extension versus inverse square root of
force, showing the linear relation between these two quantities. Dashed line shows result for freely-
jointed polymer model with segment length 100 nm; this model describes the low-force polymer
elasticity, but fails to describe the high-force regime of the experiment.
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which is the scaling form of the partition function for the semiflexible polymer
in the limit L/A >> 1.

The dimensionless function γ(x) can be computed numerically [20] for the
semiflexible polymer (or for many variations of it [21]), but for us it will be
sufficient to consider the limits:

γ(x) =
{
x−√

x+ · · · x > 1
3x2/4 + · · · x < 1

(2.26)

The free energy we are computing here, the log of the partition function at fixed
force, can be converted to the work done extending the polymer to a given exten-
sion, W (z), by the Legendre transformation W (z) = −kBT lnZ + fz.

2.3.4. Really large forces (> 10 pN)

For forces in the range 10 to 40 pN, the double helix starts to stretch elastically.
This stretching can be described by adding an term to the result above [18, 20]:

z

L
= 1− 1√

4βAf
+

f

f0
(2.27)

The constant f0 has dimensions of a force, and represents the stretching elastic
constant of the double helix. In terms of the Young modulus, this elastic constant
for a rod of circular cross-section of radius r is f0 = πr2Y . Experimental data
indicate f0 ≈ 1000 pN [22, 23].

Finally, at about 60 to 65 pN, depending a bit on salt concentration, there is an
abrupt transition to a new double helix state about 1.7 times longer than B-form.
This is sometimes called the S-form of DNA; there is at present some controversy
over whether this form is base-paired or not [24].

Fig. 7 shows some experimental data for the high-force response of dsDNA
(squares and diamonds) from two groups. Note the elongation of the double
helix above the fully extended double helix value of 0.34 nm/bp, and the sharp
‘overstretching’ transition force ‘plateau’ near 63 pN.

Problem 16: Above we saw thatB = (π/4)Y r4 where r is the cross-sectional
radius of an elastic rod. Compare the Y values inferred from B and f 0. Are they
consistent?

Problem 17: Consider longitudinal stretching fluctuations of adjacent base
pairs. Compute the energy of a fluctuation of amplitude (length) δ: what is the
root-mean-square value of the single-base-pair longitudinal fluctuation

√〈δ2〉?
Problem 18: Under some conditions, a single strand of DNA will behave like

a flexible polymer of persistence lengthAss ≈ 1 nm. Find the characteristic force
at which you might expect a single-stranded DNA to become 50% extended.
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Problem 19: Consider the Hamiltonian (2.14) generalized so that it contains a
vector force f coupled via dot product to end-to-end extension.

Show ∂βfi lnZ = 〈xi(L)− xi(0)〉 and ∂2βfi
lnZ =

〈
[xi(L)− xi(0)]

2
〉

where

the indices i label the three spatial coordinates.
Now, assuming the force to be in the z direction, verify the following formula
relating the average extension and the ‘transverse’ end-to-end vector fluctuations:

〈z(L)− z(0)〉
〈 [x(L)− x(0)]2 〉 =

f

kBT
(2.28)

Hint: use the fact that the partition function is a function of only the magnitude
of f .

This exact, nonperturbative relation is used in magnetic tweezer experiments
to infer forces applied to single DNA molecules [25]. This does not depend on
the details of the polymer part of the Hamiltonian - even if it contains long-ranged
interactions - as long as it is invariant under space rotation.

Problem 20: For the semiflexible polymer, consider the approximate force-
extension relation βAf = z/L+1/[4(1−z/L)2]−1/4. Show that this function
reproduces the high- and low-force limiting behaviors derived above (it is not a
terribly accurate representation for the exact behavior of f(z)). Compute the free
energy W (z) using this relation. Hint: integrate (2.16).

Problem 21: Consider the ‘freely jointed chain’ obtained by setting a = 0 in
the segment model. Calculate the extension, and free energy (lnZ) as a function
of force. Also calculate the transverse mean-squared fluctuations as a function of
force, and verify Eq. 2.28 for this model.

3. Strand Separation

In the previous section we didn’t say much about a feature of the double helix of
paramount biological and biophysical importance: it consists of two covalently
bonded single-stranded DNAs (ssDNAs) which are relatively weakly stuck to
one another. The weakness of the binding of the two strands makes it possible
for the two strands of a double helix to be separated from one another, either
permanently as occurs in vivo during DNA replication, or transiently as occurs
during DNA transcription (reading of DNA by RNApol) and DNA repair.

Conversion of dsDNA to ssDNA can be accomplished in a few ways:
Elevated temperature: The double helix is stable in ‘physiological’ buffer (pH
near 7, univalent salt in the 10 mM to 1 M range) for temperatures below about
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50 C. Over the range 50 to 80 C, the double helix ‘melts’, with AT-rich sequences
falling apart at the low end of this range, and highly GC-rich sequences holding
together until the high end of this temperature range.
Denaturing solution conditions: Too little salt (< 1 mM NaCl), which increases
electrostatic repulsion of the negatively charged strands, or pH too far from 7,
destabilizes the double helix, lowering its melting temperature.
Sufficient ‘unzipping force’ applied to the two strands: If you pull the two strands
apart, they will separate at forces in the 10 to 20 pN range, with force variations
reflecting the sequence composition.

Below I will discuss the last of these three modes of strand separation, un-
zipping by force. A process similar to idealized ‘forced-unzipping’ is carried
out in the cell to generate single-stranded DNA for DNA repair and replication;
specialized motor enzymes called DNA helicases track along the double helix,
pushing the two strands apart. The function of helicases can be precisely studied
using single-DNA methods [26–28], and models for their activity require us to
understand unzipping by force. To do that, we’ll need to learn about the strength
of the base-pairing interactions, and the polymer elasticity of ssDNA.

3.1. Free-energy models of strand separation

In the simplest picture of DNA melting, we ignore base sequence entirely, and
consider simply the average free energy difference g per base pair between iso-
lated, relaxed ssDNAs and dsDNA, at room temperature and in physiological
solution conditions. Then, for an N -base-pair-long molecule, the free energy dif-
ference between ssDNAs and dsDNAs would be just GssDNAs−GdsDNA = Ng.
For random DNA sequences, this g ≈ 2.5kBT ; its positive value reflects the fact
that the double helix is more stable than isolated single strands: very roughly, the
probability of observing melted single strands is e−βNg.

Thermal melting can be most simply thought about by considering the tem-
perature dependence of the base-pairing free energy, breaking it into ‘enthalpy’
h and ‘entropy’ s per base pair, i.e., g = h − sT . At the melting temperature
Tm = h/s, the free energy of isolated ssDNAs is equal to free energy of double
helix, making these two states equally probable.

Problem 22: Random-sequence DNA has g ≈ 2.5kBT at 25 C, and melts
near 70 C (T = 343 K). Estimate h and sT at 25 C (T = 298 K).

Problem 23: For the simple model where the strand separation free energy
per base is a constant g = h− sT , calculate the probability of finding separated
single strands as a function of temperature (you may consider this to be a two-
state system). How does the width of the melting transition as a function of
temperature scale with N? You may want to plug in some numbers from the
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previous problem.

3.1.1. Sequence-dependent models

A number of groups are working on accurate algorithms to predict the melting
temperatures of dsDNAs as a function of sequence. One of these classes of mod-
els assign a contribution to base-pairing free energy for each pair of bases, the
idea being that stacking interactions of adjacent base pairs play an important role
in determining the stability of the double helix. The raw data behind such models
are melting temperature data for a set of different-sequence, short (10 to 20 bp)
dsDNAs.

Table 3.1.1 lists a set of free energies due to Santalucia [10] for the ten differ-
ent oriented pairs of bases that occur along a DNA strand. All remaining pairs
of bases can be obtained from considering the complementary sequence on the
adjacent strand, e.g., the contribution of 5’-GA is the same as that of 5’-TC found
in the table. The free energy of strand separation for a long N−bp molecule is
obtained by adding the N − 1 adjacent-base contributions together. In addition,
there are contributions for the ends which we won’t discuss - all though they are
significant when considering melting of short molecules.

The key point of Table 3.1.1 is that AT-rich sequences are lower in strand-
separation free energy (the values for AT, AA and TA are all less than 1.7kBT ),
while GC-rich sequences are higher (GG, GC and CG are 3kBT or more). Mod-
els of this type are not infallible – in reality, double-helix structure and energy
depends on longer than nearest-neighbor sequence correlations – but they do give
some idea of sequence dependence of base-pairing free energy.

The data of Table 3.1.1 are for the physiological ionic strength of 150 mM
NaCl; lower ionic strengths reduce the base-pairing free energy. An ionic-strength
correction for the base-pairing free energy has been given by Ref. [10]): ∆g i =
0.2 ln(M/0.150) where M is the molarity of NaCl.

Problem 24: Calculate the free energy differences between separated ssDNAs
and double helicies, for the following sequences: 5’-AATTAATTAATT,
5’-GCGCGCGGCCGG, 5’-AGCTCCAAGGCT. You may want to consult refer-
ence [10] to include the end effects.

Problem 25: In Table 3.1.1 you can see that AT-rich sequences have roughly
2kBT less free energy holding them together than do GC-rich sequences. For a
random N -base sequence, there will therefore be a mean free energy of strand
separation, and fluctuations of that free energy. Calculate the mean free energy
per base pair, and estimate the fluctuations.
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3.1.2. Free energy of internal ’bubbles’

The above discussion suggests that thermal melting might be described by a one-
dimensional Ising model with sequence-dependent interactions, i.e., with some
quenched ‘randomness’. However, this would ignore an important physical effect
that acts to suppress opening of bubbles in the interior of a long double helix.
This effect is the entropic cost of forcing an internal ‘bubble’ to close [29]. This
cost is not included in the strand separation free energy models described above
which are fit to data obtained from melting of short double helicies.

This loop free energy is easy to roughly understand - we have already dis-
cussed it above indirectly in our discussion of juxtaposition of DNA sequences.
We mentioned that the long-molecule limit for DNA juxtaposition probability
should be J ≈ N−3/2 simply from considering the fact that the two molecule
ends should be found in a volume of radius R ≈ N 1/2. If we think about this
probability in terms of a free energy cost of constraining the ends to be near one
another, we obtain the loop free energy cost

∆Gloop =
3
2
kBT lnN (3.1)

Since ssDNA has a persistence length of roughly one base (0.7 nm), the N rel-
evant here is simply the number of bases in the loop. For an internal ssDNA
bubble formed by opening N base pairs, we should use 2N as the loop length.

This additional free energy discourages opening of internal bubbles, eliminat-
ing the use of the simple Ising model with short-ranged interactions to describe
DNA melting. In fact, the logarithmic interaction of (3.1) is sufficiently long-
ranged to kill the usual argument against a phase transition in a 1d system. A
real phase transition occurs in the ‘pure’ DNA melting model including the log-
arithmic loop effect; however, variations in local melting temperatures due to
sequence variations along long real DNAs wash out a sharp phase transition [29].

We can estimate the total free energy cost of an N -base-pair internal bubble,
adding the base-pairing/stacking free energy to the loop free energy cost:

N∑
i=1

gi +
3
2
kBT ln(2N) (3.2)

The sequence-dependent term ranges from about NkBT to 4NkBT , making the
price of a large, 10 bp bubble from roughly 20 to 45 kBT : i.e., very rare except
for the most AT-rich sequences. Larger bubbles are even more costly, making
them exceedingly rare excitations.
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3.1.3. Small internal bubbles may facilitate sharp bending

Small internal bubbles are not impossibly costly excitations: a 3 bp bubble costs
8 to 15 kBT . Short AT-rich 3 bp sequences are by this reckoning, open roughly
0.1% of the time, and can be expected every few hundred base pairs (e.g., the
particularly weak sequence TATA appears once every 256 base pairs in random-
sequence DNA).

These small, thermally excited bubbles suggest an explanation for the recent
results of Cloutier and Widom [12] (see Fig. 5) showing that the cyclization
(loop-formation) probabilities of dsDNAs less than 300 bp long are far larger than
we would expect from the simple elastic bending model 2.5. The experimental
data indicate that tight bends of the double helix can occur via an alternative,
lower-free-energy mechanism. One possibility is that via separation of a few
base pairs, a ‘flexible joint’ might appear that could reduce the bending energy of
formation of a loop. Although the free energy cost of generating a few-base-pair
‘joint’ is roughly 10kBT , for short DNAs this becomes similar to the bending
free energy saved by concentrating much of the bending into a localized, highly
distorted defect in the double helix.

Problem 26: Consider Fig. 5, which shows experimental data indicating that
circular closure of 94 bp DNAs occurs with probability far above the expected
value Jcircle. Suppose that for some free energy ε we can form a small bub-
ble, and kink the DNA so that it can still close smoothly, but now if one bub-
ble is excited, with the tear-drop shape which minimizes the bending energy. If
two bubbles are excited, no bending is required. Estimate the probabilities of
the zero-bubble, one-bubble and two-bubble closure states (use the Yamakawa-
Stockmayer-Shimada loop formation probabilities 2.11 and 2.12; don’t forget
that the kink can appear at any base pair position along the molecule). Estimate
what ε should be to explain the 94 bp data.

Fig. 5 shows how the juxtaposition probability is affected by the inclusion of
flexible joints with energy cost 9, 10, 11 and 12 kBT , via a detailed calculation
[13]. The experimental data are described well by joints which cost 11 kBT ,
close to the value expected for localized strand separation of a few base pairs.

3.2. Stretching single-stranded nucleic acids

Single-stranded DNA has also been studied in single-molecule stretching experi-
ments, and shows polymer elasticity distinct from that of double-stranded DNA:
ssDNA has twice the contour length per base of the double helix since the helical
backbones of the double helix contain about 0.7 nm per base, about half of the
double helix contour length of 0.34 nm per base pair,
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Fig. 7. Force versus extension of double helix and ssDNA. Squares show experimental dsDNA data
of Léger et al [30, 31] for 500 mM NaCl buffer, diamonds show experimental dsDNA data of Smith
et al [23] for 1 M NaCl buffer. Data for physiological salinity (150 mM NaCl) are similar, but have a
plateau shifted a few pN below the 500 mM result, see Refs. [24,31]. Circles show experimental data
of Bustamante et al [32] for ssDNA; stars show high-force ssDNA data of Rief et al [33]. The left,
lower-extension curve is for 150 mM NaCl, while the right, higher-extension curve is for 2.5 mM
NaCl. The two ssDNA datasets converge at high force, to the behavior x ≈ ln f .
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ssDNA has a persistence length of roughly a nanometer since the stiffness of the
double helix is generated by the base pairing and stacking; once isolated, the ss-
DNA backbone is very flexible,
ssDNA can stick to itself by base-pairing and stacking interactions between bases
along the same molecule.
These features are illustrated in Fig. 7 which plots experimental data for double
helix and ssDNA side by side. The double helix, with a persistence length of 50
nm, is extended to its full contour length of about 0.34 nm/bp by forces of a few
pN, and then shows a stiff force response, and finally the ≈ 60 pN force plateau.
By comparison, ssDNA (open circles) only gradually stretches out, showing no
stiff response near 0.34 nm/bp, and no force plateau. The force required to half-
extend ssDNA is more than 3 pN; this reflects its short persistence length ≈ 1 nm
(recall that the force needed to stretch out a polymer is roughly kBT/A).

Fig. 7 also shows the strong dependence of ssDNA on salt concentration (open
circles, left and right branches). At 150 mM NaCl (‘physiological’ salt, left set
of data), ssDNA sticks to itself at low extensions, leading to an ≈ 1 pN force
threshold to start opening the molecule. At low salt concentration (10 mM NaCl,
right set of data) electrostatic self-repulsion eliminates this sticking effect, and
the force threshold for initial extension.

For low salt concentration, the extension is well described by a logarithmic
dependence on force, ln f/f0. This behavior can be understood in terms of a
scale-dependent persistence length resulting from electrostatic effects [20,34,36].
At low forces, electrostatic self-repulsion effectively stiffens the polymer, helping
to stretch it out; at higher forces, this effect is less pronounced (the monomers
are farther away from one another) and the chain becomes harder to stretch. This
effect is much more pronounced for ssDNA than for dsDNA since the backbone
persistence length ≈ 1 nm is comparable to, or even less than, the screening
length for electrostatic interactions (recall the Debye screening length is λD =
0.3 nm /

√
M for NaCl at M Mol/litre).

Problem 27: Force-extension data of Fig. 7 at low ionic strength are de-
scribed by x(f) ≈ x0 ln(f/f0) where x0 and f0 are constants. Compute the
force-extension response in the high-force limit using Eq. 2.22, given the scale-
dependent persistence length

A(q) =
{
A0q0/q q < q0
A0 q > q0

(3.3)

A more realistic model of scale-dependence of persistence length, based on
Coulomb self-interactions, gives rise to similar behavior; see Refs. [20, 34–36].
A recent experiment by Visscher et al [37] on a poly-U RNA, eliminating base-
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pairing, shows scale-dependent persistence length behavior rather clearly.

3.3. Unzipping the double helix

We now have all the pieces to analyze unzipping of the double helix by a force
which pulls the two strands apart (Fig. 8). We will compare the free energy of
two paired bases, g, to the free energy at constant force for two unpaired and
extended bases. The free energy per base can be found from the experimental
elasticity data via 2.24:

γ(f) =
∫ f

0

df ′x(f ′) (3.4)

where x(f ′) is the length per base of the ssDNA data of Fig. 7. The function
γ(f) increases with f . The threshold for unzipping occurs when this two times
this free energy – for the two bases – equals the base-pairing energy g:

2γ = g (3.5)

Treating the ssDNA as a harmonic ‘spring’ we can write γ(f) ≈ (1f)2/(2kBT )
where 1 ≈ 0.4 nm (this roughly matches the integral of the 150 mM force curve
of Fig. 7 for forces below 20 pN). This gives an unzipping force:

f =
√
kBTg

1
(3.6)

Plugging in g from 1 to 4 kBT , we see that the unzipping force varies from 10
to 20 pN, depending on sequence. Experiments of Bockelmann and Heslot on
genomic molecules find fluctuations around 15 pN, the average of this range (see
Fig. 9) [38]. The full range of unzipping forces from 10 to 20 pN has been
observed by Rief et al [33, 39] in experiments on pure AT and GC DNAs.

Problem 28: For the harmonic model of ssDNA extensibility, calculate the
force-extension relation. Compare the results for forces between 1 and 20 pN
with the 150 mM NaCl ssDNA data in Fig. 7.

Problem 29: We can alternately describe unzipping using extension as a con-
trol parameter. Suppose one has a partially unzipped dsDNA, where n base pairs
have been separated. The free energy is made up of elastic stretching energy, and
base pairing energy:

F =
kBT (2x)2

2(2n)b2
+ ng (3.7)
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Fig. 8. Unzipping of DNA by force. Note that a torque can be applied to the end of the dsDNA
region, coupled to the rotational angle θ.

Fig. 9. Experimental data of Bockelmann et al [38] for unzipping of DNA at 0.02 µm/sec. Sequence-
dependent variations in force occur, around an average force of about 15 pN.
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Note that opening n base pairs results in a 2n-base-long ssDNA (see Fig. 8).
Note also that n ≥ 0. Find the equilibrium number of base pairs unzipped, as
a function of extension. For a partially unzipped molecule, also calculate the
fluctuation in the number of bases that are unzipped. What are the corresponding
extension fluctuations?

3.3.1. Effect of torque on dsDNA end

As unzipping proceeds, the dsDNA region must rotate to allow the two ssDNAs
to be pulled out. If a torque is applied at the end of the dsDNA region, it can
affect the unzipping force. This rotation is θ0 = 2π/10.5 = 0.60 radians per
base pair unzipped. Adding the work τθ0 that must be done against the torque
for each unzipped base pair, the equation for unzipping becomes

2γ = g − τθ0 (3.8)

For the sign convention of Fig. 8, right-handed torque reduces the stability of the
double helix, while left-handed torque acts to stabilize it. Using our harmonic
approximation, we can obtain a torque-dependent unzipping force [40]:

f =

√
kBT (g − τθ0)

1
(3.9)

As torque becomes more positive, the unzipping force threshold is decreased.
When the torque becomes positive enough to unwind the DNA on its own, the
unzipping force threshold becomes zero: this point is given by τ = g/θ 0, which
ranges from 1.6kBT for weakly bound (AT-rich) sequences, to 7kBT for the
most strongly bound (GC-rich) sequences.

If unzipping is done rapidly, the rotation of the dsDNA will generate a drag
torque. In the simplest model for this where the DNA is supposed to spin around
its axis, the drag torque is roughly

τ = −4πηr2Lds dθ
dt

(3.10)

where Lds is the length of the dsDNA region, r ≈ 1 nm is the dsDNA cross-
section hydrodynamic radius, and viscosity η = 10−3 Pa·sec for water and most
buffers. Effects of the drag associated with dsDNA rotation have been observed
in experiments of Bockelmann and Heslot (see Fig. 10) [43]; the above model
is in fair agreement with the experiment [41]. Note that P. Nelson has argued
that there is an additional and large contribution to the rotational drag by per-
manent bends along the DNA contour [42]. The shape of the DNA gives rise
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Fig. 10. Experimental results of Ref. [43] showing unzipping force rate-dependence. The two ssDNA
ends are forced apart at velocities of 4, 8, 16 and 20 µm/sec. Force versus ssDNA extension (see
Fig. 8) is plotted. During unzipping, higher velocities generate higher unzipping forces.

to an effective increase in its cross-section radius r and thus the rotational drag
coefficient.

Problem 30: Estimate the number of base-pairs per second that should be
unzipped in order that rotational drag can push the unzipping force up by 5 pN
(assume a uniform molecule with g = 2.5kBT ).

3.3.2. Fixed extension versus fixed force for unzipping

In single-molecule stretching experiments, like any experiment on a small sys-
tem, choosing whether force or extension are controlled can be critical to the
results. For example, laser tweezers and atomic force microscopes essentially
control the position of the end of a molecule; magnetic tweezer setups by con-
trast provide fixed force. Unzipping of DNA provides a very good example of
how these two types of experiments give different kinds of data. Fixed-extension
unzipping experiments push the ssDNA-dsDNA ‘fork’ along, and observe jagged
force ‘stick-slip’ events. Each stick event corresponds to the momentary stalling
of the fork at a GC-rich ‘barrier’: the force then increases to a level where a ‘slip’,
or barrier-crossing event occurs (see Fig. 9).

Conversely, in a fixed-force experiment, one observes the increase of exten-
sion as a function of time. For unzipping, this typically takes the form of a series
of extension plateaus. These plateaus again correspond to the stalling of the fork
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at a GC-rich barrier region; however, now the force is constant, and one must
wait for a thermal fluctuation for unzipping to proceed. If one is well below the
maximum unzipping force for GC-rich sequences (see 3.6), the barriers can be
immense: even a fraction of a kBT per base pair required to cross a long, slightly
GC-rich region can give rise to an immense barrier. This effect has been theo-
retically emphasized by D. Lubensky and D. Nelson [44] and the constant-force
extension plateaus have been observed in experiments by the group of Danilow-
icz et al [45].

Recent experiments by the same group have studied unzipping as a function of
temperature [46]. The results are in surprisingly discord with predictions based
on the temperature dependence in the ‘standard models’ of DNA strand separa-
tion free energy [10].

4. DNA Topology

The topological properties of DNA molecules are important biologically. The
linking number of the two strands in the double helix is particularly important to
DNA structure in bacterial cells, and controls ‘supercoiling’, or wrapping of the
double helix around itself. The entanglement of the double helix with itself (knot-
ting), and with other molecules (braiding) is also important since DNA molecules
(chromosomes) must be separated from one another during cell division.

4.1. DNA supercoiling

The phenomenon of supercoiling is familiar from dealing with twisted strings
or wires: twist strain in a string can be relaxed by allowing the string to wrap
around itself. For DNA molecules, description of this behavior requires one more
ingredient, thermal fluctuation of the molecule conformation.

The physical feature of the double helix that gives rise to supercoiling is the
wrapping of the two strands around one another. Neglecting bending for the
moment, the relaxed double helix has one link between strands for each 10.5 bp
along the molecule. This ‘relaxed linking number’ can be expressed as Lk 0 =
N/10.5 bp for an N -bp double helix. The relaxed helix repeat of 10.5 bp can be
expressed as a length h = 3.6 nm, allowing us to also write Lk0 = L/h.

4.1.1. Twist rigidity of the double helix

Still avoiding bending, if we twist the double helix so that one end is rotated by
an angle Θ relative to the other, the number of links between the strands will
be changed by an amount Θ/(2π). In this case where there is no bending, the
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change in linking number of the double helix, ∆Lk, equals the change in twist,
∆Tw.

It costs some energy for this twist distortion: a simple harmonic model is

E

kBT
=

C

2L
Θ2 =

2π2C
L

(∆Tw)2 (4.1)

This ‘twist’ energy is controlled by an elastic constant C with dimensions of
length. This twist persistence length is about 100 nm for double helix DNA
based on recent single-molecule experiments [47]; note that this is appreciably
larger than the estimate of ≈ 75 nm that is the result of a number of solution-
phase experiments. We’ll see a possible explanation for this disagreement later
when we discuss twist rigidity of DNA.

Problem 31: Consider the harmonic twist energy. Calculate the thermal ex-
pectation value of Θ2: your result will depend on the molecule length L. Why is
C called the twist persistence length?

Problem 32: Assuming the double helix to be composed of a uniform isotropic
elastic medium, use A and C to determine the two Lamé coefficients, and equiv-
alently the Young modulus and the Poisson ratio (you will likely want to review
Landau and Lifshitz’ Theory of Elasticity [4] unless you are really an expert in
elasticity theory; also recall that we have already figured out the Young modulus
from both the bending persistence length and, independently, from the stretching
force constant).

Problem 33: What torque is necessary to twist a DNA of length L by angle
Θ? For left-handed twisting, for what angle Θ will the twisting build up enough
torque to start unwinding AT-rich sequences (see Sec. 3.3.1)?

4.1.2. Writhing of the double helix

When we allow bending of the double helix to occur, the linking number is no
longer equal to the twisting number. However, as long as the bending radius
is large compared to the radius of the double helix, there is a simple relation
between twisting and bending contributions to the total linking number of the
double helix:

∆Lk = ∆Tw +Wr (4.2)

The quantity Wr, or ‘writhe’, is dependent only on the bending of the double
helix backbone. Very roughly, Wr measures the signed number of crossings of
the molecule axis over itself, when the molecule shape is projected onto a plane.

Formally, linking number of the two strands can only be defined if the double
helix is circular, i.e., if both of the strands are closed circles. I will be slightly
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�

2r

Fig. 11. Plectonemic supercoiled form of circular DNA, showing length between crossings �, and
cross-sectional radius r. Note that the only appreciable DNA bending occurs at the ends; also note
that the line indicates double-helix DNA.

loose with this, and sometimes talk about linking number of open molecules.
If you want to make linking number of a linear molecule precise, you can just
imagine extending the strand ends straight off to infinity, and closing them there.
This will not lead to large corrections in the situations we will be interested in.

We consider the situation where as bending occurs, the linking number re-
mains fixed. This is most relevant to circular double helix molecules (with no
breaks or ‘nicks’ in their backbones), the linking numbers of which are constant.
Circular DNAs are found in bacteria: both the large 4.5 Mb chromosome and
small plasmids (typically 2 to 15 kb in circumference) are normally found in
closed circular form.

A second situation where ∆Lk can be considered constant is when one is
holding onto the two ends of a DNA molecule, and forcing them to be parallel
and unable to rotate. This case can be studied experimentally in single-DNA
micromanipulation experiments, most notably in elegant magnetic tweezer ex-
periments [25].

By rearranging 4.2 to ∆Tw = ∆Lk − Wr we can see the mechanism for
buckling of a twisted wire: twisting without bending will change ∆Tw away
from zero, costing twist energy. However, now if the wire is allowed to buckle
so that it wraps around itself, the Wr from the wrapping can cancel the ∆Lk,
and reduce the twisting energy. By braiding the molecule with itself, the bending
energy can be small as well. This self-wrapping of DNA is called plectonemic
supercoiling.

For the plectonemic structure shown above, the magnitude of the writhe is and
equal to the number of crossings: |Wr| ≈ L/(21). The sign of the writhe for the
right-handed coiling shown in Fig. 11 is negative; for a left-handed plectonemic
supercoil, the writhe would be positive. For achiral conformations, Wr = 0.
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4.1.3. Simple model of plectonemic supercoiling

We can write down a simple model for the free energy of the plectoneme:

F

kBT
=

2π2C
L

(
∆Lk± L

21

)2
+
AL

2

( r

12

)2
+

L

(Ar2)1/3
(4.3)

The first term is just 4.1 with 4.2 rearranged and plugged in, using the plec-
tonemic writhe Wr = ∓L/21; the top sign is for a right-handed plectnome, the
bottom is for left-handed. The second term is the bending energy 2.5, using r/1 2

as the curvature.
The third term arises from confinement of the DNA inside the ‘tube’ of the

supercoil, of radius r. We can think about this in terms of a correlation length
λ for thermally excited bending fluctuations: the smaller this wavelength, the
smaller the transverse fluctuations. For bending with transverse displacement r
over wavelength λ, the curvature is r/λ2; the energy of this bend is kBTAr

2/λ3.
Using the equipartition theorem this energy will be kBT , giving us the relation
λ = A1/3r2/3. Finally, the confinement free energy density will be kBT/λ,
giving the third term of 4.3.

The free energy model 4.3 needs to be minimized to determine the equilibrium
values of r and 1. First, we can determine r:

r ≈ 13/2

A1/2
(4.4)

Then we can plug this result in to 4.3; simplifying some numerical factors we
have

F

kBTL
= 2π2C

( |∆Lk|
L

− 1
1

)2
+

1
1

(4.5)

The sign has been chosen so that the writhe has the same sign as ∆Lk, which
always reduces the free energy. Minimizing this with respect to 1/1 gives the
result:

1
1
=

|∆Lk|
L

− 1
4π2C

(4.6)

There is no solution for positive 1 when linking number is too small: when
|∆Lk| < L/(4π2C), the confinement free energy is too expensive, so the DNA
does not supercoil. Then, as |∆Lk| is increased beyond this limit, 1/1 becomes
gradually smaller and the supercoil tightens up. This threshold indicates that un-
til the added linking number exceeds one per twist persistence length, the DNA
molecule will not supercoil.
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Linking number is often expressed intensively using σ ≡ |∆Lk|/Lk0 which
just normalizes the change in linking to the relaxed linking number. In a more
careful calculation where numerical factors and geometrical details are accounted
for carefully, the threshold for supercoiling is at σ ≈ h/(2πC); plugging in h =
3.6 nm and C = 100 nm gives a threshold σ of roughly 0.01. Another feature
of the more complete theory is that the transition is ‘first-order’: the minimizing
1 jumps from 1 = ∞ to a finite value. Electron microscopy experiments [48]
indicate that plectonemic supercoiling requires about this level of σ (see Fig.
12); calculations of structural parameters of plectonemes also are in accord with
the results of EM studies. In eubacteria such as E. coli, the chromosome and
small circular ‘plasmid’ DNAs have nonzero ∆Lk, with a σ ≈ −0.05. This
undertwisting is thought to play a role in gene regulation, since AT-rich promoter
regions will be encouraged to open by the torsional stress associated with this
amount of unlinking.

An important feature of plectonemically supercoiled DNA is its branched
structure. Branch points can be thought of as defects in the plectonemic su-
percoil structure: like the ends, there is some energy cost associated with them.
However, there is an entropy gain ≈ kB lnL/A of having a branch point, since
it can be placed anywhere in the molecule. Balance of branch point energy and
entropy determines the observed density of a Y -shaped branch point for every 2
kb along a supercoil with σ = −0.05. Branching is also very important to the
internal ‘sliding’ of DNA sequence around in the interior of a plectonemically
supercoiled DNA, is important to some enzymes which bind to two sequences
simultaneously, often across a plectnomemic superhelix [49].

Problem 34: Find the dependence of r on ∆Lk for the model of plectonemic
supercoiling discussed above. At what value of σ does r reach r0 = 2 nm,
roughly the point at which the double helix will run into itself?

This effect is important as when the double helix starts to run into itself, twist
compensation can no longer occur.

The following three problems will work out well best using the slightly more
detailed models for the writhe and for the bending energy of the plectoneme
discussed in Refs. [50, 51].

Problem 35: For the plectonemic supercoil including the constraint r > r 0,
find the free energy F/kBT (note the two regimes where r is free and where r is
constrained to be r0).

Problem 36: For the plectonemic supercoil model discussed above, find the
dependence of ∆Tw/∆Lk on ∆Lk and σ.

Problem 37: Calculate the torque in a DNA double helix of length L, as a
function of ∆Lk, for the plectnonemic supercoil described above. For σ < 0, at
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Fig. 12. Electron micrographs of supercoiled DNA at a few different σ values. Scale bar is 100 nm
(300 bp); molecules are all 7 kb (2300 nm) in length. Reproduced from Ref. [48].
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what value of σ does unwinding of AT-rich sequences in the double helix start to
occur?

4.2. Twisted DNA under tension

It is possible to carry out single-DNA experiments as a function of force, and
linking number [25]. The description of this situation along the framework of
Sec. 2.3 is straightforward. At a fixed force, changing σ away from zero com-
pacts a DNA molecule. If enough torsional stress is placed on a DNA molecule
under tension, buckling will occur and plectonemic supercoils will appear along
its length, leading to strong reduction in molecule extension [50,51], as has been
observed experimentally [25]. However, if σ is not so large that plectonemic
coils appear, a milder compaction occurs which can be treated using a small-
fluctuation approach, discussed by Moroz and Nelson [47], and by Bouchiat and
Mezard [52]. This region of relatively mild compaction by writhing is a good
regime in which to measure the double helix torsional modulus.

To carry out the treatment of this mild compaction analytically, we need the
writhe of a nearly straight DNA, in terms of tangent vector fluctuations. As long
as the tangent vector stays in the hemisphere around ẑ, we have:

Wr =
∫ L

0

ds

2π
ẑ · t̂× ∂st̂
1 + ẑ · t̂ (4.7)

Now we can write the Hamiltonian for a DNA subjected to tension, plus held
at fixed linking number, by just adding the twist energy 4.1 to the stretching
Hamiltonian 2.14. The White formula 4.2 allows us to express the twist in terms
of linking number and writhe:

E

kBT
=

∫ L

0

ds

[
A

2

(
dt̂
ds

)2
− f

kBT
ẑ · t

]
(4.8)

+
2π2C
L

(
∆Lk−

∫ L

0

ds

2π
ẑ · t̂× ∂st̂
1 + ẑ · t̂

)2

We’ll do a harmonic calculation, expanding 4.8 to quadratic order in u, the trans-
verse (xy) components of the tangent vector:

E

kBT
=

2π2C
L

(∆Lk)2 − Lf

kBT
(4.9)

+
∫ L

0

ds

[
A

2

(
du
ds

)2
+

f

2kBT
u2 − 2πC

h
σẑ · u× ∂su

]
+O(u3)
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Here the ∆Lk in the cross term of the twist energy has been converted to the
intensive linking number density σ. For σ = 0, we return to the high-extension
limit of the stretched semiflexible polymer; for nonzero σ, the cross-product term
will generate chiral fluctuations.

The fluctuation (u-dependent) part of the quadratic Hamiltonian 4.9 can be
rewritten in terms of Fourier components of u:∫

dq

2π

[
1
2
(
Aq2 + βf

) |uq|2 + 2πCσ
h

iqẑ · u∗
q × uq

]
+ · · · (4.10)

Problem 38: Show that the quadratic part of the twisted-stretched DNA energy
4.10 has an instability (a zero eigenvalue) at the point (2πCσ/h)2 = 4Af/kBT .

This result is just the classical buckling instability of a beam of bending
rigidity B subjected to compressive force f and torque τ , which occurs when
τ2 = 4Bf [53].

Problem 39: Show that the log of the partition function lnZ(f, σ) for the
quadratic-ufluctuations, including the non-fluctuation contributions, has the form,
in an expansion in inverse powers of force:

lnZ
L

=
f

kBT
− 2π2Cσ2

h2
−
(

f

kBTA

)1/2

+
1
4

(
2πCσ
h

)2(
kBT

4A3f

)1/2
+ · · · (4.11)

You will need to find the normal modes of the fluctuations in order to compute
this partition function. Note that the result can be written in a way similar to Eq.
2.26: A

L lnZ = γ(x, y) where x = βAf and y = 2πCσ/h are dimensionless
variables characterizing the applied force and the linking number, respectively.

The extension as a fraction of the total molecular length follows from 4.11 and
2.16, as:

〈
ẑ · t̂〉 = 1−

(
kBT

4Af

)1/2
− 1

2

(
2πCσ
h

)2(
kBT

4Af

)3/2
+ · · · (4.12)

For this model, twisting the DNA (σ �= 0) leads to a reduction in extension.
This can be seen in the data of Fig. 13; however, note that the quadratic twist-
dependence occurs only quite near to σ = 0, and is clearest in the 0.2 pN data of
the figure.

The free energy 4.11 can be used to find the relation between the torque ap-
plied at the end of the chain, and the linking number. Since linking number is
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Fig. 13. Extension of DNA as a function of linking number σ, for a few fixed forces. Reproduced
from Ref. [25].

controlled by rotating the end of the chain, the torque applied at the end of the
chain is obtained from the linking number derivative of 4.11:

τ

kBT
= − 1

2π
d

d∆Lk
lnZ =

[
1− 1

2
C

A

(
kBT

4Af

)1/2] 2πCσ
h

(4.13)

Moroz and Nelson have emphasized this result: the effective twist modulus of
the double helix goes down as tension in the chain goes down. This effect occurs
because for lower forces, more writhing can occur, allowing the twist energy and
therefore the torque to be reduced.

The linearized calculation of the Wr fluctuations in Eq. 4.9 cannot account for
plectoneme-type crossings. Recently, Rossetto has argued that these fluctuations
modify the O(σ2) term in Eq. 4.12 [54]. This effect may be behind discrepancies
between C determinations by different theoretical approaches, thanks to either
over- or under-estimation of writhe fluctuations.

4.3. Forces and torques can drive large structural reorganizations of the double
helix

The previous calculations have assumed that the forces and torques were not able
to cause structural phase transitions in the double helix. We’ve already seen that
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Fig. 14. ‘Phase diagram’ of double helix as function of external torque and force. Reproduced from
Ref. [55].

at zero force an unwinding torque of about−2kBT is sufficient to start unwinding
AT-rich regions of the double helix. Experiments show that there may be as many
as five different structural states of the double helix which can be accessed by
twisting and pulling on DNA [55], and those experiments allow one to predict
a ‘force-torque phase diagram’ (Fig. 14). For forces in the < 50 pN range the
double helix is stable roughly over the torque range −2kBT to +7kBT (the B-
DNA region of Fig. [55]).

4.4. DNA knotting

Above we’ve discussed the effect of supercoiling, which is controlled by the ‘in-
ternal’ linking number of the two ssDNAs inside the double helix. A separate and
important property of the double helix is the ‘external’ entanglement state of the
double helix backbone, the more usual case of topology discussed in usual poly-
mer physics. A single circular DNA can carry a knot along its length; alternately
two or more circular DNAs can be linked together.

When an initially linear DNA is closed into circular form, there is some possi-
bility that a knot is generated. You might be wondering why all the molecules of
Fig. 12 are all unknotted. There are two reasons for this, the first one biological
and the second one biophysical.
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4.4.1. Cells contain active machinery for removal of knots and other entangle-
ments of DNA

Cells contain enzyme machines called topoisomerases which catalyze changes in
DNA topology. For example, entanglements (including knots) can be removed
or added by type-II topoisomerases which are able to cut the double helix, pass
another double helix segment through the resulting gap, and then seal the gap up.
Type-II topoisomerases require ATP.

However, although existence of type-II topoisomerases tells us that it is possi-
ble for entanglements to be removed, we still are left wondering how they ‘know’
how to remove rather than add entanglements. Astonishingly, it has been ex-
perimentally demonstrated that type-II topoisomerases by themselves have the
capacity to recognize and remove knots and other entanglements along circular
DNA molecules [56].

4.4.2. Knotting a molecule is surprisingly unlikely

Let’s suppose we take an ensemble of linear DNA molecules of length L at low
enough concentration that they do not interact with one another. Now, let’s add a
small quantity of an enzyme which catalyzes closure of the molecules into circles,
and the reverse process (this is possible). Then we can ask what the probability
Punknot(L) is that the molecule is unknotted, as a function of L.

We can argue that Punknot ≈ exp [−L/(N0A)], for some constant N0. For
small L, there will be a large free energy cost of closing a molecule into a circle
making Pknot → 1. However, for larger molecules, the probability of an un-
knotted configuration should go down. The exponential decay reflects the fact
that over some length (N0 persistence lengths) the probability of having no knot
drops to 1/e: applying this probability to each L0 along a DNA of length L gives
us Punknot(L) ≈ (1/e)L/(N0A). This rough argument can be made mathemati-
cally rigorous [57].

It turns out that even for an ‘ideal’ polymer which has no self-avoidance in-
teractions, N0 ≈ 600. For a slightly self-avoiding polymer like dsDNA in phys-
iological buffer, N0 ≈ 800. What this means is that to have a 1/e probability
to find even one knot along a dsDNA, it has to be 800 × 150 = 120, 000 bp
long! (the long persistence length of DNA helps make this number impressive).
Even more incredibly, for a self-avoiding polymer, N 0 ≈ 106! This remarkable
fact is theoretically understood only on the basis of numerical simulations: see
Ref. [58].

Experiments on circular DNAs are in good quantitative agreement with sta-
tistical mechanical results for the semiflexible polymer model including DNA
self-avoidance interactions. For example, it is found that the probability of find-
ing a knot generated by thermal fluctuations for a 10 kb dsDNA is only about
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0.05. [59, 60]. Topoisomerases are by themselves (using ATP) able to push this
probability down, by a factor of between 10 and 100 [56].

4.4.3. Condensation-resolution mechanism for disentangling long molecules

Although topoisomerases seem to be able to help get rid of entanglements, there
must be other mechanisms acting in the cell to completely eliminate them. Here
I’ll mention a very simple model that might give you an idea of how this machin-
ery works.

Suppose we have a long dsDNA of length L, in the presence of some proteins
which act to fold DNA up along its length. We imagine that these proteins cannot
‘cross-link’ DNA segments, but that they can only compact the molecule along
its length. As these proteins bind, we imagine that they modify the total contour
length to be L′ < L, and the effective persistence length to be A ′ > A.

If these proteins bind slowly in the presence of type-II topoisomerases so that
the knotting topology can reach close to equilibrium, then the unknotting proba-
bility will have the form:

Punknot = exp
(
−L′/A′

N0

)
(4.14)

As you can see, gradually compacting (decreasing L ′) while stiffening (increas-
ing A′) DNA can drive knotting out of it; unknotting (‘entanglement resolution’)
will occur on progressively larger length scales as this condensation process pro-
ceeds.

Problem 40: Consider a condensation process which gradually condenses
DNA a DNA of length L by folding it along its length, to make a progressively
thicker fiber, of length L′ and cross-section radius r′. If volume is conserved dur-
ing condensation, and if the effective Young modulus of the fiber is a constant,
find the unknot probability as a function of L ′/L.

This simple model gives some idea of how proteins which structure DNA
can play a role in controlling its entanglement at short enough scales where we
can use polymer statistical mechanics. However, at the large scale of a whole
chromosome cross-links do occur: they are necessary to fit the chromosome into
the cell! It is also possible to envision a process where chromosome condensation
by cross-linking also can drive out entanglements as long as the cross-links are
transient [61].
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5. DNA-Protein Interactions

So far we mostly talked about DNA by itself in buffer, focusing on the double
helix’s physical properties. In the cell, DNA is covered with proteins. You can
think of DNA as a long string of thickness 2 nm, and the proteins as little particles
of diameters of 1 to 10 nm plastered all along the string’s length. The DNA plus
all the proteins bound to it make up the biologically active chromosome.

Some proteins which bind to DNA are primarily architectural, folding and
wrapping DNA so as to package it inside the cell. Other proteins have primarily
genetic functions, interacting with particular sequences, usually between 4 and 40
bp in length. Of course, these two functions can be mixed: as examples proteins
which tightly fold up DNA will likely repress gene expression; the expression of
genes likely cannot occur without changes in DNA folding architecture.

Proteins which interact with DNA tend to be sorted into two groups:
Sequence-nonspecific proteins that stick anywhere along the double helix;
Sequence-specific proteins that bind to particular sequences very strongly, and to
other sequences only relatively weakly.

Most proteins involved in chromosome architecture have a mainly nonspecific
interaction with DNA. Such interactions are often electrostatic in character, and
can be disrupted with high salt concentrations. Examples are the histone proteins
of the nucleosome, and nonspecific DNA-bending proteins such as HU from E.
coli or HMG proteins from eukaryote cells. Note that nonspecifically-interacting
proteins usually bind better to some sequences than others, but not a whole lot
better. Under physiological conditions, nonspecifically interacting proteins usu-
ally bind to DNA once their concentration is in the 10 to 1000 nM range.

Sequence-specific interactions occur via chemical interactions which depend
on the structure of the bases. These are not usually electrostatic in character
(most of DNA’s charge is on the phosphates, which are common to all the bases)
although most sequence-specific proteins also have a nonspecific interaction with
DNA which is to some degree electrostatic. Examples of sequence-specific inter-
actions include transcription factors and restriction enzymes. Sequence-specific
proteins can often bind their targets at concentrations well below 1 nM. This high
level of affinity is necessary: the concentration of transcription factors in E. coli
can be as little as one per cubic micron (i.e., one per E. coli cell), which in molar
units is (1/6 × 1023 Mol)/(10−15 litre) = 1.6 nM. In the human cell with a
nucleus of volume ≈ 103 µm3, affinities in the picomolar range are needed to
bind sequence-specific proteins to their targets with reasonably high probability.
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5.1. How do sequence-specific DNA-binding proteins find their targets?

How long does it take for a protein to find a single specific target in a large DNA
molecule? There is a long history of test-tube experiments studying this classic
biophysics problem: one model system has been the E. coli protein lac repressor.
Let’s follow one protein of diameter d as it moves by diffusion to a target of size
a; we’ll suppose that the targets are present in solution at concentration c.

5.1.1. Three-dimensional diffusion to the target

In the absence of any nonspecific interaction effects, the protein will diffuse
through space until it hits the target. To analyze how long it takes for the pro-
tein to find one target, let’s divide space up into boxes of volume V = 1/c each
containing one target. We’ll further divide each box up into ‘voxels’ of volume
a3; one voxel is the target. Since the protein moves by diffusion, its trajectory
will be a random walk in the box. The number of steps at scale a that must be
taken to move across the box (of edge V 1/3) is V 2/3/a2; the probability of find-
ing the target before the protein leaves the box is therefore a/V 1/3 (this result
is often called ‘diffusion to capture’). The time that this search occurs in is just
the diffusion time V 2/3/D, where D = kBT/(3πηd) is the protein diffusion
constant.

Once the protein leaves one box of volume V , the same search starts over in
an adjacent box: this will occur V 1/3/a times before a target is found. So, the
total time required for our protein to find a target by simple three-dimensional
diffusion is

τ3d =
V 1/3

a
× V 2/3

D
=

V

Da
(5.1)

Note that this formula could apply in solution where there is one target per solu-
tion volume V , or to targeting in a cell compartment of volume V . In the latter
case, the same volume is searched over and over until the target is found.

If we convertV to concentration c, our result is 1/τ3d = 4πDac. The factor of
4π comes from a more detailed calculation of diffusion to capture, originally due
to Smolochowski [62]. This rate is proportional to concentration; biochemists
usually describe the rate of this type of bimolecular reaction by normalizing the
actual rate by concentration, leaving the association rate:

ka = 4πDa =
4πkBT
3πη

a

d
(5.2)

Since the target size is less than the protein size, we find that the maximum asso-
ciation rate is the prefactor 4πkBT/(3πη) ≈ 4 × 10−18 m3/s ≈ 108 M−1s−1.
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This rate is often referred to as the ‘diffusion-limited reaction rate’.

5.1.2. Nonspecific interactions can accelerate targeting

Experiments in the 1970s showed that lac repressor binds its target at closer to
ka ≈ 1010 M−1s−1 which was initially quite a puzzle. However, Berg, Winter
and von Hippel proposed and experimentally supported a solution to this paradox
[63]. They realized that lac repressor also had a nonspecific interaction with
DNA, and that this nonspecific interaction could make the target effectively larger
than the protein and the binding site!

The picture is that when lac repressor first hits DNA, the nonspecific inter-
action allows it to ‘slide’ randomly back and forth along the DNA, exploring a
region of length 1sl before it dissociated. Now, the target size is increased to be
1sl, so the time we will have to spend doing three-dimensional diffusion will be
reduced to 1/(4πDsl1slc), where Dsl is the diffusion constant for the ‘sliding’
motion.

However, it is not yet clear if this will really accelerate ka, since each sliding
event will eat up a time of roughly 12sl/Dsl, and to be sure to find the target, L/1sl
sliding events have to occur, requiring a total one-dimensional diffusion time of
L1sl/Dsl.

So, the total time required to find the target by this ‘facilitated diffusion’ pro-
cess is

τfac =
1

4πD1slc
+
L1sl
Dsl

(5.3)

If we write the ratio of this and the three-dimensional result 5.2, we obtain

ka,fac
ka,3d

=
τ3d
τfac

=
1sl/a

1 + 4π D
Dsl

12slLc
(5.4)

As long as 1sl is not too long, the nonspecific interaction does accelerate the
reaction rate. This basic model and its experimental study were introduced by
Berg, Winter and von Hippel [63].

A key feature of 5.3 is that for fixed total DNA length L and target concentra-
tion c = 1/V there is an optimal 1sl:

1∗sl ≈
√
V/L (5.5)

where we have dropped the 4π and the ratio of diffusion constants. For the E.
coli cell, V ≈ 109 nm3 and L ≈ 106 nm, indicating 1∗sl = 30 nm = 100 bp. This
is the sliding length inferred for lac repressor from biochemical experiments on
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facilitated diffusion [63]. This suggests that 1sl for lac repressor is optimized to
facilitate its targeting in vivo [64].

Note that the above arguments are independent of the conformation of the
large target-containing DNA [64]. At the level of scaling, the association rate
constant should be the same for either a relaxed random coil, or a fully stretched
molecule. This conclusion, and the dependence of ka on concentration and total
DNA length (see Eq. 5.4), could be checked using individual micromanipulated
DNA molecules, given a way to detect when a protein binds its target along a
long DNA. Recently Wuite and coworkers have demonstrated micromechanical
detection of target recognition by the restriction enzyme EcoRV, which induces
a DNA bend when it binds to its target sequence [65].

5.2. Single-molecule study of DNA-binding proteins

A number of groups are working at present on experiments looking at protein-
DNA interactions using single-DNA micromanipulation, which we touched on
in the last paragraph. The basic idea is to study proteins which change DNA
mechanical properties, for example, by putting bends or loops into the double
helix. Then, the binding of the proteins can be monitored via the force-extension
response of the molecule. To give an idea of what can be obtained from this kind
of study, I’ll describe a few simple models.

5.2.1. DNA-looping protein: equilibrium ‘length-loss’ model

Consider a protein which binds to a double helix under tension f , resulting in a
reduction in contour length available for extension by amount 1. If we suppose
that the binding energy of the protein in kBT units is ε and its bulk concentration
is c, we can write down a simple two-state model for the free energy of the
protein-DNA complex as a function of the occupation of the protein [66]

lnZn =
(L− n1)

A
γ(βAf) + n(ε+ ln vc) (5.6)

where n = 1 for protein bound, n = 0 for protein free in solution. The first term
is the DNA stretching free energy: when the protein binds, the contour length
of extensible DNA is reduced by 1. The last two terms give the free energy for
a bound protein including the entropy cost of its removal from free solution. A
factor of protein volume v is included to make the inside of the log dimensionless.

We can immediately find the probability for the protein to be bound:

Pon
Poff

=
c

Kd
e−

�
Aγ(βAf) ≈ e−β�f+ln(c/Kd)+··· (5.7)
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where we have defined Kd = e−ε/v, the ‘dissociation constant’ or concentra-
tion at which the protein is half-bound for zero force; the final term gives the
large-force limit (recall γ(x) = x +

√
x + · · ·). If the complex is bound at low

force (c > Kd), it will stay bound until a force threshold is reached. Roughly,
this characteristic force is f ∗ ≈ ln c/Kd/1; beyond this force, the DNA-protein
complex will open up. In an experiment where extension versus force can be
used to monitor the stability of a protein-DNA complex, one can therefore make
a measurement of the zero-force Kd – if one can observe equilibrium (on-off
fluctuations) at the force-induced dissociation point.

At zero force, Finzi and Gelles have observed such opening-closing fluctu-
ations using lac repressor, which is able to bind two targets so as to form a
loop [67]. Experiments of this type at nonzero force have recently been done
for the gal repressor protein, which is also able to trap a DNA loop [68].

Problem 41: A single nucleosome involves 146 bp of dsDNA wrapped around
a 10 nm-diameter octamer of ‘histone’ proteins. The total binding free energy of
this structure is thought to be roughly 30 kBT (see [66] and references therein).
Using the length-loss model, estimate the force at which nucleosomes ought to be
released by applied force. You might like to compare your result with the 15 pN
force observed in many ‘nucleosome-pop-off’ experiments (see, e.g., Bennink et
al [69], and Brower-Toland et al [70]). What do you think is the origin of the
discrepancy?

Problem 42: An elegant loop-formation experiment in which equilibrium fluc-
tuations can be observed uses a single piece of RNA under force [71], which can
fold into a hairpin ‘helix-loop’ structure, held together by base-pairing and base-
stacking interactions. When under force, opening and closing kinetics can be
observed on roughly 1 sec timescales. Using the single-strand unzipping results,
construct a two-state model for the loop opening and closing (recall the free en-
ergy per base stabilizing the coil is is roughly 2.5 kBT , while the persistence
length of the single-stranded backbone is roughly b = 1 nm), and estimate how
Pclosed/Popen varies with applied force.

5.2.2. Loop formation kinetics

The previous section supposes that one can observe on-off fluctuations in the
presence of force. However, it is possible, given strong protein-DNA interactions,
that spontaneous dissociation will be essentially unobservable. In this case, one
will observe the on-kinetics only. In the case of a small DNA loop, the complex
formation rate will involve a barrier made of two components: the free energy
cost of pulling in a length 1 of DNA as discussed above, plus the free energy cost
of making the DNA loop [72] (recall the ‘J-factors’ of Sec. 2.2.5). Putting these
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together gives a simple estimate of the loop formation rate

kloop ≈ k0 exp [−β1f + ln vJ(1)] (5.8)

where J is the juxtaposition ‘J-factor’ relevant to the reaction (see 2.11, 2.12),
and where v is the ‘reaction volume’, the volume of the region of space in which
the reaction can proceed.

The exponential dependence on force will effectively shut off the reaction for
forces significantly larger than f ∗ ≈ (kBT/1) lnJ . The drastic force-quenching
of irreversible loop formation by force has been verified using an essentially
exact transfer-matrix calculation [73]; experimental data that quantitatively test
this model have not yet been reported, although moderate forces have been ob-
served to completely eliminate looping by the two-site-binding restriction en-
zyme BspMI [74]. Finally, if a series of loop binding sites are available on a long
DNA, the rate (5.8) will be proportional to the velocity at which the DNA end
retracts due to loop formation [72].

For large loops (1 > A) and low forces (f < kBT/1 < kBT/A) random-
coil fluctuations will reduce the severity of the force-quenching effect, giving
ln kloop(f) ≈ ln kloop(0) − A1(βf)2. This regime is one of quite low force,
since kBT/A ≈ 0.1 pN.

5.2.3. DNA-bending proteins

In vivo, sequence-specific interactions such as the DNA-looping examples dis-
cussed in the previous section, take place on DNA which is in large part covered
by other proteins. Much of this protein serves to package the DNA in the cell,
and has sequence-nonspecific interaction with DNA. One of the classes of DNA-
packaging proteins that has already been shown to be quite interesting to study
using micromechanical approaches are DNA-bending proteins: examples are HU
(a primary DNA-bending protein from E. coli) [75] and various HMG proteins
(the prevalent nonspecific DNA-bending proteins in eukaryotes) [76], both of
which are present at high copy number (roughly one per 200 bp of DNA) in vivo.
These two proteins generate roughly 90◦ bends where they bind DNA.

An important chromosome-packaging role of DNA-bending proteins is well
established for bacteria [77]. In eukaryotes, the compaction of chromosomal
DNA occurs in part via wrapping in nucleosomes (the histones in which can
be considered to bend DNA); however, many non-histone proteins including the
DNA-bending HMGs act to establish ‘higher-order chromatin structure’, a term
which is often invoked as a cover for our ignorance of the chromosome structure
at supra-nucleosomal scales.

Traditional biochemical approaches to the study of DNA-bending proteins in-
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Fig. 15. Two examples of DNA-bending proteins with known structures. Left: NHP6A, an HMG
protein from yeast, bound to DNA. Right: HU, a DNA-bending protein from E. coli, bound to DNA.
Both bend DNA by roughly 90◦ , over roughly 10 bp. Recall the 2 nm diameter of the double helix.
Image courtesy of Prof. R.C. Johnson, UCLA.

clude study of changes in electrophoretic mobility resulting from binding of pro-
tein, among other bulk solution phase methods. Single-DNA experiments offer
a complementary view of such proteins: in the presence of nonspecifically bind-
ing DNA-bending proteins we can expect a modification of the force-extension
behavior of bare DNA we have discussed above. Qualitatively, we can antici-
pate that a DNA will be more difficult to extend if it contains sharp bends due to
bound proteins along its length; we expect a shift of the force-extension curve, to
higher forces, or a compaction of DNA relative to the ‘bare’, protein-free case.

This force-shift effect, similar to that discussed for the two-state ‘lost length’
model [66] discussed in the previous section, has been observed for a few DNA-
bending proteins. The first experiment of this type was carried out with the E.
coli protein IHF [78]; the DNA-bending protein HU has been similarly studied
[79, 80].

Eukaryote DNA-bending proteins have also been studied and show similar
effects [80]. Fig. 16 shows force-shift data for the HMG-type DNA-bending
protein NHP6A from yeast. As more protein is added, the force curve shifts to
larger forces. Something apparent in those NHP6A data is that at moderately
high forces ≈ 10 pN, even when the DNA is covered with protein, the protein-
DNA complex length can be forced to near the original bare DNA contour length
(about 16 microns in this experiment on λ-DNA). In these experiments it was
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Fig. 16. Experimental force-extension data for individual λ-DNA molecules in the presence of the
protein NHP6A (the HMG protein shown in Fig. 15). Black filled squares show the force-extension
response of bare DNA with no NHP6A present. The other symbols show the force-extension response
of single DNAs at various NHP6A concentrations: +, 3 nM; gray filled squares, 5 nM; black filled
triangles, 10 nM; gray filled triangles, 33 nM; open circles, 75 nM. Reproduced from Ref. [80].

determined that the protein was not being dissociated by force; therefore the
DNA-protein complexes are flexible. The E. coli DNA-bending proteins IHF and
HU also show this effect [79, 80].

Since thermally excited DNA bends take place over molecule segments of
about the persistence length A ≈ 150 bp long, the force-extension response of
a single DNA should be quite strongly perturbed when there is more than one
protein bound per persistence length A = 150 bp. This indicates that strong
force shifts such as the 33 nM data shown in Fig. 16 correspond to at least
several proteins bound per persistence length, i.e., quite dense ‘coverage’.

We can construct a model for this kind of experiment by supposing that where
proteins bind, they generate localized (and flexible) bends. The discrete-tangent
model introduced in Sec. 2 can be modified to include the effect of DNA-bending
proteins [21]:

βE =
∑
k

[
(1− nk)

a

2

∣∣t̂k+1 − t̂k
∣∣2 + nk

a′

2
(
t̂k+1 · t̂k − cosψ

)2
−µnk − βf ẑ · t̂k

]
(5.9)

which contains, in addition to tangent vectors t̂k, two-state occupation degrees
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Fig. 17. Theoretical force-extension behavior for discrete-semiflexible polymer model including
DNA-bending protein effects. Leftmost curve shows bare DNA (no additional bends), while the
curves shifted progressively to the right show the shift to higher forces generated by a series of higher
protein concentrations (chemical potential µ = −3.91,−2.30,−1.61,−0.69, 0 and 3.00; corre-
sponding low-force binding site occupation of 22%, 60%, 72%, 89%, 93% and 100%). Reproduced
from Ref. [21].

of freedom nk which are either 0 or 1. The nk are controlled by the ‘chemical
potential’ µ; for simple, independent equilibrium binding, µ = constant + ln c
where c is the bulk protein concentration [21, 66]. When n k = 0, the joint
between segments k and k+1 has the usual semiflexible polymer bending energy.
However, when nk = 1, the joint has a preferred angle ψ, and a modified rigidity
a′.

This type of model has as degrees of freedom, in addition to the orientation
vector t̂k, an additional ‘scalar field’ nk describing protein binding. Models of
this general type have been introduced to describe DNA overstretching (in this
case the scalar variable describes conformational change of the double helix)
[81–83] as well as protein-DNA interactions [36, 84]. The idea common to these
works is the use of additional variables (nk) to account for DNA conformational
change, and to examine how the coupling of those variables to the tangent vectors
t̂k modifies force-extension behavior.
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Fig. 17 shows the force-shift effect for a numerical transfer-matrix calculation
of the partition function for this model, using segment length b = 1 nm, double
helix stiffness a = 50 (persistence length 50 nm), a bend angle ψ = 90◦, and a
protein-bent-DNA bending constant a ′ = 10 (quite flexible). The result is, as the
binding chemical potential µ is varied, a gradual shift of the force curve to larger
forces qualitatively similar to that seen experimentally. The segment length b
defines the maximum density of proteins that can bind, i.e., one per 3 bp for the
parameters used in Fig. 17.

5.2.4. Analytical calculation for compaction by DNA-bending proteins

I now present a simple computation which gives some insight into the numerical
solution of the DNA-bending-protein model (Eq. 5.9 and Ref. [21]). The aim
here is to look at a ‘weakly distorting’ limit, where we can see how the basic
semiflexible-polymer model is modified by the presence of DNA-bending pro-
teins in the limit that they only slightly deflect t̂.

The portion of Eq. 5.9 that describes how one of the protein occupation vari-
ables n is coupled to two adjacent tangent vectors t̂ and t̂′ is

a

2
|t̂′ − t̂|2(1 − n) +

[
a′

2
(
t̂′ · t̂− cosψ

)2 − µ

]
n (5.10)

Using 1− |t̂′ − t̂|2 = 2t̂′ · t̂ and dropping constants and terms beyond quadratic
order in t̂′ − t̂ we have

a

2
|t̂ − t̂′|2 − a+ a′(1 − cosψ)

2
n|t̂′ − t̂|2 − µn (5.11)

where the chemical potential µ has been shifted by a constant. Keeping only the
quadratic terms supposes that the DNA-bending effect of any protein present is a
weak perturbation to the straightening generated by the external tension f .

We will now rewrite this model in continuum form. The discrete nature of n
may be enforced by adding an n2 term to make the amplitude of n-fluctuations
well-defined. The model including force is now:

∫
ds

[
A

2

∣∣∣∣∂t̂∂s
∣∣∣∣
2

+
1
2
n2 − µn− βf ẑ · t− gn

∣∣∣∣∂t̂∂s
∣∣∣∣
2
]

(5.12)

The parameter g ∝ a+[1−cosψ]a′ describes the coupling of the protein density
to bending, and should be positive for DNA-bending proteins like HU, HMGB1
and NHP6A, and negative for DNA-stiffening proteins.
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For fixed µ, fluctuations of n can be integrated, to obtain

∫
ds

[
1
2
(A− 2gµ)

∣∣∣∣∂t̂∂s
∣∣∣∣
2

− βf ẑ · t
]

(5.13)

A shift of chemical potential (binding free energy) causing binding of protein
(positive shift of µ) causes a shift in the effective persistence length, to A eff =
A−2gµ. The reduction in persistence length generated by DNA-bending proteins
(g > 0) causes a shift in the force-extension curve to larger forces, similar to that
obtained in the transfer-matrix solution of the discrete model (Fig. 17).

Problem 43: Show that the expectation value of the ‘bound protein density’
along the DNA takes the form

〈n〉 = µ+ g
〈∣∣∂t̂/∂s∣∣2〉

If you want to compute the derivative term, you must include an upper wavenum-
ber cutoff qmax (equivalently, a finite lattice constant b = 2π/qmax). You will
find that 〈n〉 diverges as you take the cutoff away (the limit qmax → ∞).

Problem 44: The previous calculations supposed fluctuating protein occupa-
tion n. Alternately, DNA-bending proteins may be able to bind to DNA perma-
nently. This may be treated in an averaged fashion by supposing n in Eq. 5.12 to
take a fixed, positive value. For this case, use Eq. 5.12 to show A eff = A− 2gn.

Problem 45: A more complete treatment of the n fluctuations would replace
n2 in Eq. 5.12 with 1

2

[
mn2 + v(dn/ds)2

]
, where m and v are positive parame-

ters. Find the form of Aeff in this case.

5.2.5. Effects of twisting of DNA by proteins

Proteins which bend DNA often untwist it (e.g., HU [75]), and this effect might
be probed using single-DNA experiments. This has been explored for the discrete-
tangent model [21], but the simple continuum calculation presented above can
also be generalized to the case where DNA is twisted:

∫
ds

[(
A

2
− gn

) ∣∣∣∣∂t̂∂s
∣∣∣∣
2

− βf ẑ · t+ 1
2
n2 − µn+

C

2
(Ω− χn)2

]
(5.14)

The last term accounts for the twist energy including a shift in its zero due to
binding of protein [21]. The new field Ω(s) is just the twist density [51]; the total
twist is

∫
dsΩ(s) = 2π∆Tw. The DNA-twisting parameter χ is negative for a

protein which underwinds DNA, since in this case bound protein (n > 0) shifts
the minimum of the twisting energy to Ω < 0.
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Expanding the last term in (5.14) gives

∫
ds
[A
2

∣∣∣∣∂t̂∂s
∣∣∣∣
2

− βf ẑ · t̂+ m

2
n2 +

C

2
Ω2

−
(
µ+ g

∣∣∣∣∂t̂∂s
∣∣∣∣
2

+ CχΩ

)
n
]

(5.15)

where m = 1 + χ2C. Completing the square and integrating out

n =
(
µ+ g

∣∣∂t̂/∂s∣∣2 + CχΩ
)
/m,

∫
ds
[1
2

(
A− 2g

m
[µ+ CχΩ]

) ∣∣∣∣∂t̂∂s
∣∣∣∣
2

− βf ẑ · t̂

+
C

2

(
1− Cχ2

m

)
Ω2 − Cµχ

m
Ω
]
+ · · · (5.16)

where constants and terms beyond quadratic order in t̂ have been dropped.
We use ∆Tw = ∆Lk−Wr in the form

∫
dsΩ/2π = σL/h−Wr to eliminate

the twist (recall h is the DNA helix repeat). The terms of quadratic order in t̂
(recall from Eq. 4.9 that Wr is O(t̂2]) are:

∫
ds

{
1
2

(
A− 2g

m

[
µ+

2πC
h

χσ

]) ∣∣∣∣∂t̂∂s
∣∣∣∣
2

− βf ẑ · t
}

−2πC
h

([
1− Cχ2

m

]
σ − h

2πm
χµ

)
2πWr+ · · · (5.17)

This energy describes Gaussian fluctuations of t̂ and has the same form as Eq.
4.10, but with shifted persistence length A and twist density σ values:

A → Aeff = A− 2g
m

[
µ+

2πC
h

χσ

]

σ → σeff =
[
1− Cχ2

m

]
σ − h

2πm
χµ (5.18)

These effective quantities can be used to write the extension in the high-force
expansion form of Eq. 4.12:

〈
t̂ · ẑ〉 = 1− 1√

4βAefff
− 1

2

(
2πCσeff

h

)2(
kBT

4Aefff

)3/2
+ · · · (5.19)
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At very high force, the 1/
√
f term dominates, and will cause a shift of the

peak of extension as a function of σ, to where χσ < 0. In this regime, binding
of protein contracts the polymer, so the peak extension is found where the bound
protein is the least. For a protein which untwists DNA (χ < 0), the peak of
extension occurs at very high force for σ > 0.

At lower, but still high force, the 1/f 3/2 term can compete. This term vanishes
at the zero of σeff , where the torsion in the molecule, and therefore its chiral
coiling, are minimized. In the DNA-untwisting-protein case, this is for σ <
0. Therefore, for a DNA-untwisting protein (χ < 0), the shift of the peak in
extension as a function of force can changes from σ > 0 for large force, to σ < 0
for lower force. This gives some analytical insight into the same effect found in
numerical calculations of Ref. [21].

Problem 46: Starting from Eq. 5.14 compute A eff and σeff for the case that
the bound protein density does not fluctuate (consider n a fixed, positive constant
as in Problem 44).

5.2.6. Surprising results of experiments

Surprises have come out of the experimental studies of DNA-bending proteins.
The E. coli HU protein, also known to bend DNA, has also been studied us-
ing single-DNA micromanipulation [79, 80]. While a compaction effect (shift to
higher forces) has been observed for HU, at very high concentrations the force
curve shifts back to lower forces than for bare DNA! In Ref. [79] it was suggested
that at high concentration, HU is capable of essentially polymerizing along the
double helix, and that HU-covered DNA is essentially straight and actually stiffer
than bare DNA. This explained the shift of the force-extension curve to lower
forces than for bare DNA (the result of increasing the persistence length A in Eq.
2.23). This ‘bimodal’ behavior of HU is a good example of a feature of a protein
that was not well established using standard biochemical assays, but which was
rather straightforward to infer using single-DNA methods.

A second experimental surprise associated with DNA-bending proteins is that
once these proteins reach a certain high coverage on the double helix, they no
longer will spontaneously dissociate, even when the protein in solution is re-
moved (established for HU, HMGB1 and NHP6A in Ref. [80]). This high level of
stability of protein densely assembled onto DNA may be a result of cooperative
interactions between adjacent proteins, i.e., a term nknk+1 in 5.9. While such
stability due to cooperativity is expected for some proteins such as RecA, which
is well known to form a polymerized ‘coat’ on the double helix (and which has
been studied using single-DNA methods [85]), this behavior was not expected
for HU, HMGB1 and NHP6A.

These results suggest that there may be appreciable restrictions on the appli-
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cability of the widely assumed ‘two-state’ equilibrium binding models for in-
teraction of these non-sequence-specific proteins with DNA. Proteins like HU,
HMGB1 and NHP6A are in part responsible for folding up DNA in vivo, and
their ability to form highly stable complexes may be important to chromosome
‘architecture’.

6. Conclusion

This course has focused on the micromechanics of individual DNA molecules
studied in single-DNA micromanipulation experiments. A major focus has been
on the use of statistical-mechanical models to describe how spontaneous ther-
mal fluctuations and external applied stresses change the conformation of large
DNAs.

With the double helix we have a favorable situation since the atomic and even
base-pair scales (< 1 nm) are well separated from the ≈ 100 nm scale over
which thermal fluctuations are able to bend the double helix. This separation
of scales allows us to describe the elastic response of a dsDNA from essentially
zero force, up to 10 pN or so, using only one ‘effective’ elastic constant, the
persistence length A = 50 nm [20]. As force is increased beyond 0.1 pN, we
have seen that a single ‘correlation length’

√
kBTA/f describes the essentially

Gaussian fluctuations of the tangent vector away from the force direction.

However, this course has also emphasized how quickly this pleasant long-
wavelength description can fall by the wayside. Unzipping the double helix (Sec.
3) requires only about 15 pN forces, and converts the staid double helix into two
single-stranded DNAs, which can by no means be described using a single elas-
tic constant! [86] Under some circumstances ssDNA is a polymer with a strongly
wavenumber- (and therefore force-) dependent persistence length [20, 36]. The
interplay of the backbone polymer elasticity, Coulomb interactions, and self-
adhesion via attractive base-base interactions [35] makes single-stranded DNA
impossible to describe using a single persistence length. Theories to describe
ssDNA by necessity have a richer structure.

Something similar happens when one twists the double helix: at low forces
(roughly < 0.3 pN), the response of the double helix to twisting can be captured
using the twist-persistence-length model discussed in Sec. 4.2, which really just
adds one more elastic constant to describe twist deformations. However, for even
rather low forces, underwinding can rather easily drive strand separation.

Description of the opening of the double helix, and other abrupt force- and
torque-driven structural transitions of the double helix such as ‘overstretching’
[22,23], need additional degrees of freedom on top of the elastic degrees of free-
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dom used to describe relatively smooth bends and twists. For example, conver-
sion of the double helix to ssDNA requires at least a ‘helix-coil’ Ising-type degree
of freedom.

A few of the examples discussed in these notes have used additional degrees
of freedom of this type to describe localized ‘defects’ along the double helix.
Localized strand-separated regions excited thermally may be responsible for the
anomalously large cyclization probability of short DNAs observed by Cloutier
and Widom [12,13]. Similar models can be used to describe proteins which gen-
erate local bends or other distortions of the double helix [21]. Inevitably we can
expect these ‘local defects’ to interact with one another along the double helix,
and to possibly facilitate self-organization of stable protein-DNA complexes, as
observed in Ref. [80]. Those experiments show that even at the level of a single
species of protein interacting with a single DNA, self-assembled protein-DNA
complexes can strongly resist disassembly. Fully understanding the nonequilib-
rium phenomena in experiments such as Ref. [80] requires at the least, theories
that include kinetics.
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Base i and i + 1 (5’→3’) Free energy gi (150 mM NaCl, pH 7.5, 25 C)
AA 1.68
AT 1.42
AG 2.19
AC 2.42
TA 0.97
TG 2.42
TC 2.12
GG 3.00
GC 3.75
CG 3.68

Table 1

Base-pairing-stacking free energies of Santalucia [10]. Free energies are in kBT units, and are for 25
C, 150 mM NaCl, pH 7.5. For other temperatures and salt concentrations the values must be corrected
(see text).


